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ABSTRACT

Extracorporeal hemoadsorption is a promising therapeutic strategy for neurological complications associated with chronic kidney 
disease and acute kidney injury. Neurological disorders—including cognitive impairment, Parkinson disease, and dementia—are 
more prevalent in individuals with renal dysfunction due to shared inflammatory pathways and the accumulation of protein-bound 
uremic toxins (PBUTs), such as advanced glycation end products (AGEs), indoxyl sulfate, and p-Cresol. PBUTs exacerbate neuro-
logical conditions by promoting neuroinflammation and neurodegeneration. They are inadequately removed via conventional 
dialysis, necessitating alternative solutions. Hemoadsorption has shown potential in reducing systemic inflammation and elimi-
nating PBUTs, offering neuroprotective and disease-modifying effects. Preclinical studies have demonstrated significant reduc-
tions in AGEs, indoxyl sulfate, and amyloid-beta peptides in models of Alzheimer's disease (AD) and other conditions, improving 
outcomes. In clinical trials involving inflammatory disorders such as Guillain-Barré syndrome, hemoadsorption reduced cytokines—
including tumor necrosis factor alpha, interleukin-17 (IL-17), and IL-22—correlating with enhanced recovery and reduced venti-
lation requirements. While evidence supports its efficacy, further research is needed to standardize protocols, evaluate long-term 
outcomes, and explore its potential in broader populations. Hemoadsorption could transform the management of individuals with 
renal and neurological disorders, improving disease outcomes and quality of life. 
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INTRODUCTION

Neurological abnormalities commonly occur in individuals with 
chronic kidney disease (CKD) and acute kidney injury (AKI). 
These relationships are considered secondary, as the brain and 
kidney engage in complex crosstalk to maintain homeostasis. 
Consequently, AKI and CKD can induce anatomical, functional, 
and biochemical changes in the brain, including alterations 
in neurotransmitter and cytokine concentrations, acid-base 
homeostasis, drug metabolism, and the accumulation of uremic 
toxins.[1,2] In addition, the incidence of neurological disorders has 

increased considerably in recent years, with greater risk observed 
in association with CKD. Indeed, individuals at all stages of 
CKD have a higher likelihood of developing cognitive disorders, 
Parkinson disease (PD), dementia, and neuropsychiatric condi-
tions such as depression and anxiety.[3,4] Although the etiologies 
of these neurological disorders differ and are multifactorial and 
complex, inflammation appears to be a common denominator.[4,5] 

EPIDEMIOLOGY OF NEUROLOGICAL DISEASES 
AND KIDNEY FUNCTION

Epidemiologic data suggest that impaired renal function is 
strongly associated with an increased risk of cerebrovas-
cular disease. Individuals undergoing hemodialysis exhibit an 
exceptionally high incidence of cerebral microhemorrhages 
and a greater prevalence of silent strokes.[3,4] In the general 
population, the risk of fatal or nonfatal ischemic and hemor-
rhagic stroke increases when the estimated glomerular filtration 
rate (eGFR) falls below 60 mL/min/1.73 m2,[6] rises linearly 
with further eGFR decline, and is even higher in the presence 
of albuminuria.[7] 

CKD is also associated with a higher risk of cognitive disorders, 
including a 30%-60% prevalence of cognitive impairment in 
executive functions—with the prevalence increasing by 11% for 
every 10 mL/min/1.73 m2 decrease in eGFR.[8-10] Some studies 
have reported improved cognitive performance following a 
hemodialysis session, suggesting a possible link to the reduction 
of uremic toxins.[11] 

Other conditions associated with an eGFR decline are 
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movement disorders, especially PD [Table 1]. Reduced eGFR 
and proteinuria have been identified as independent risk factors 
for the development of PD, with a hazard ratio (95% confidence 
interval) of 1.74 (1.32-1.63) for an eGFR < 30 mL/min/1.73 
m2.[18,20] This relationship may be explained by shared patho-
physiologic mechanisms, such as oxidative stress, protein-bound 
uremic toxins (PBUTs), and hypertension.[22,23] 

Furthermore, the accumulation of uremic toxins—each 
following molecule-specific trajectories during CKD 
progression—may contribute to neurological dysfunction. 
For instance, molecules implicated in the kidney-brain axis, 

such as parathyroid hormone and beta 2 microglobulin 
(β2M), begin to rise as early as CKD Stage 3.[24] Levels of 
asymmetrical dimethylarginine, a known neurovascular 
toxin, approximately double by the time end-stage kidney 
disease is reached. Notably, parathyroid hormone may begin 
to increase even within the normal range from CKD Stage 
2,[24-26] suggesting that subtle metabolic disturbances emerge 
early and may affect brain health over time. Additionally, the 
accumulation of PBUTs, such as p-Cresol and indoxyl sulfate 
(IS), typically begins at CKD Stage 4, further contributing to 
systemic and neurological toxicity [Figure 1].[27,28] 

Table 1
Epidemiological evidence linking kidney dysfunction to neurodegenerative outcomes

Diseases Author 
(original 
Study)

Year Study population Sample size (n) Study design Main findings

Cognitive im-
pairment and 
dementia

Kjaergaard 
et al.,[12]

2023 Danish national registry 
cohort comparing individuals 
with kidney disease vs. 
matched general population 
without kidney disease or 
dementia

82,690 
(CKD)/413,405 
(controls)

Retrospective popula-
tion-based cohort

Kidney disease associated with modestly increased risk of 
dementia, primarily vascular dementia

Stocker et 
al.,[13]

2023 German population-based 
cohort aged 50-75 years, 
followed for 17 years

9940 Prospective cohort study No statistically significant association between impaired 
kidney function and dementia, AD or vascular dementia

Li et al.,[14] 2024 U.S. adults ≥ 60 years from 
NHANES 2011-14

2234 Cross-sectional analysis CKD stages 3-5 were significantly associated with worse 
cognitive performance (CERAD: OR 0.70; Animal Fluency: OR 
0.64; DSST: OR 0.60). Lower eGFR linked to poor cognition. 
Nonlinear dose-response for DSST and Animal Fluency; linear 
for CERAD. Cognitive decline also seen in early CKD. Authors 
recommend cognitive screening in all CKD patients

Chu et al.,[15] 2022 Adults ≥ 60 years from 
NHANES (USA)

3223 Cross-sectional study CKD stages G4-G5 were associated with worse global and do-
main-specific cognitive function (especially executive function, 
verbal fluency, and immediate recall), but only among those 
with low physical activity. No association for delayed recall 
or self-perceived memory decline. Physical activity mitigated 
cognitive impairment risk in CKD. Objective cognitive tests 
were more sensitive than subjective measures

Shang et 
al.,[16]

2024 Chinese adults ≥ 45 years 
old without baseline CI

16,515 Prospective cohort 
(CHARLS)

CKD was associated with a higher incidence of cognitive 
impairment (HR 1.56; 95% CI: 1.19-2.04) and earlier CI onset 
by 1.24 years. Risk was higher in 45-54 age group. CKD also 
associated with increased mortality (HR 1.25; 95% CI: 1.03-
1.51), but not statistically significant in Laplace analysis

PD Peng et 
al.,[17]

2024 General population aged 39-
72 years from UK Biobank

400,571 Prospective cohort study Decreased kidney function (eGFR < 30 mL/min/1.73 m²) is 
significantly associated with increased risk of PD. The study 
also found a nonlinear relationship between eGFR and PD risk, 
and identified changes in brain gray matter volumes in low 
eGFR groups

Nam et 
al.,[18]

2019 South Korean adults > 65 
years

3,580,435 Nationwide retrospective 
cohort

Chronic renal dysfunction and proteinuria (≥ 1+ in dipstick 
test) were independently associated with increased risk of 
developing PD. Risk increased progressively with lower eGFR 
and higher proteinuria. Coexistence of CKD and proteinuria 
conferred the highest risk (HR 1.33).

Wang et 
al.,[19]

2017 Korean adult aged 60-80 
years from NHIS-Senior 
cohort

506,089 Retrospective cohort 
study

Advanced CKD (eGFR <15 mL/min/1.73 m²) was significantly 
associated with increased risk of PD, especially in men (HR 
3.71). No significant association was found in earlier CKD 
stages or in women.

Wang et 
al.,[20]

2014 Taiwanese adults with ESRD 
compared to a general 
population without kidney 
disease or PD

8325 ESRD pa-
tients vs. 33,382 
controls

Retrospective cohort 
study

ESRD was associated with a 1.73-fold increased risk of PD. 
The risk was higher in women, younger patients, and during 
the first year after ESRD diagnosis. Risk was further elevated 
in those with diabetes and cardiovascular disease.

Kwon et 
al.,[21]

2023 Korean cohort of individuals 
aged ≥ 40 years with 
matched controls

16,559 
(CKD)/66,236 
(controls)

Observational retrospec-
tive cohort

No significant overall association between CKD and PD, 
except in specific subgroups (e.g., rural residents)

CKD, chronic kidney disease; CERAD, Consortium to Establish a Registry for Alzheimer’s Disease; DSST, digit symbol substitution test; NHIS, National Health Insurance Service; eGFR, estimated glomeru-
lar filtration rate; PD, Parkinson diseases; AD, Alzheimer’s Disease; NHANES, National Health and Nutrition Examination Surveys; OR, odds ratio; CI, cognitive impairment; HR, hazard ratio; 95% CI, 95% 
confidence interval; CHARLS, China Health and Retirement Longitudinal Study; ESRD, end-stage renal disease.
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The complex interplay between the brain and the kidney can 
be partially explained by the susceptibility of both organs to 
vascular lesions and, consequently, to traditional cardiovascular 
risk factors. However, other mechanisms may also be involved, 
such as chronic inflammation and direct neuronal toxicity 
induced by uremia.[3] 

ROLE OF INFLAMMATION AND ACCUMULATION OF 
UREMIC TOXINS IN NEUROLOGICAL CONDITIONS

Inflammation and neurological damage

The blood-brain barrier (BBB) is a highly selective, nonfenes-
trated system separating the brain parenchyma from the blood 
and protects the brain from circulating neurotoxic compounds. 
Its disruption has been implicated in neurodegenerative condi-
tions such as neurocognitive impairment, Alzheimer’s disease 
(AD), and PD.[29,30] 

Rodent and human models of CKD have exhibited increased BBB 
permeability and associated cognitive impairment.[31,32] Studies 
have demonstrated that pro-inflammatory cytokines—including 
tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and 
IL-1β—can damage the BBB and thus alter its permeability by 
destroying the tight junctions of the neurovascular unit.[33,34] 
These cytokines can also change the phenotype of the microglia 
toward a pro-inflammatory state, characterized by the secretion 
of more TNF-α, IL-1α, and complement component 1q, which 
interact with astrocytes to propagate neuroinflammation.[35] In 
individuals with CKD, the levels of these cytokines are frequently 
elevated due to reduced renal clearance, the inherent chronic 
inflammatory state of the disease, and dialysis-related factors.[36] 
Consequently, CKD may contribute to BBB disruption and 
increase the brain’s vulnerability to neuroinflammation. 

Neuroinflammation contributes to cellular impairment in 
various domains, such as synaptic dysfunction, inhibition of 
neurogenesis, microglial priming, apoptosis, and alterations in 
CNS proteins—ultimately accelerating brain aging and cognitive 
decline [Figure 2].[37] Furthermore, the cascade inflammatory 

response is a central mediator in the course of stroke. Elevated 
levels of these cytokines in the cerebrospinal fluid (CSF) and 
blood of stroke patients are associated with clinical prognosis. 
In preclinical studies, TNF-α receptor inhibitors have been 
shown to reduce brain damage in a model of ischemic stroke.[38] 

Forming another group of pathologies mediated by inflammation 
are peripheral nervous system diseases, which include Guillain-
Barré syndrome (GBS). GBS is an acute inflammatory demyelin-
ating polyradiculopathy characterized by nerve edema, perivenular 
lymphocytic infiltrates, and macrophage-mediated demyelination, 
accompanied by the production of IFN-γ, TNF-α, IL-1, and IL-10, 
which exacerbates nerve damage and promotes myelin phagocy-
tosis.[39] Additionally, analysis of the CSF of individuals with GBS 
has revealed increased concentrations of the pro-inflammatory 
cytokines IL-8, IL-1, IL-17, IL-22 and of chemokines compared 
to healthy controls.[39,40] This upregulation of pro-inflammatory 
cytokines correlates with the clinical severity of GBS, whereas 
increased concentrations of the anti-inflammatory cytokines IL-4, 
IL-10, and TGF-β are associated with recovery.[39,41] Moreover, one 
of the treatment options for GBS, intravenous immunoglobulin, 
has been shown to reduce circulating levels of the pro-inflam-
matory cytokines TNF-α and IL-1β, with clinical improvement 
linked to the reduction of TNF-α levels.[39] 

Beyond inflammatory mediators, another pathophysiological 
pathway involves the accumulation of PBUTs, which aggravate 
neurological dysfunction through distinct but complementary 
mechanisms. 

Protein-bound uremic toxins and neurological damage

The accumulation of uremic toxins is considered a nontradi-

Figure 1. Trajectory of uremic toxins and neurotoxic mediators across 
chronic kidney disease progression. PBUTs, protein-bound uremic 
toxins; PTHl, parathyroid hormone; β2M, beta 2 microglobulin; ADMA, 
asymmetric dimethylarginine. Created in BioRender. Ramirez, G. (2025) 
https://BioRender.com/m0xhy3i 

Figure 2. Mechanisms of neuroinflammation and astrocyte dysfunction 
induced by uremic toxins and systemic inflammation. TNF-α,tumor 
necrosis factor alpha; IL-6, interleukin-6; AGE, dvanced glycation end 
product; IS, indoxyl sulfate; BBB, blood-brain barrier; NF-κB, nuclear 
factor kappa-B. Created in BioRender. Ramirez, G. (2025) https://
BioRender.com/smkw6l7 
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tional risk factor for the development of neurological disorders 
in CKD.[3] Among the persistently retained molecules are 
advanced glycation end products (AGEs) and other classical 
PBUTs.[3] These metabolites are ineffectively removed through 
conventional dialysis due to their strong affinity for plasma 
proteins, leading to their systemic accumulation in individuals 
undergoing this treatment.[3,42,43] 

AGEs are formed through nonenzymatic reactions between 
sugars and proteins or lipids—a process accelerated by oxidative 
stress and altered metabolism, as observed in CKD.[44] Their 
accumulation contributes to endothelial oxidative damage, 
disrupting cell barriers via oxidant species such as hydroxyl, 
carbonate, and thiyl radicals. The accumulation of reactive 
oxygen species via the AGEs-receptor for AGEs (RAGE) 
signaling pathway increases the BBB’s paracellular permeability 
by downregulating actin depolymerizing factor expression, 
thereby promoting neuronal degeneration and cell membrane 
damage through lipid peroxidation, changes in protein structure 
and function, protein oxidation, and structural DNA damage 
[Figure 2].[45,46] 

In AD, RAGE facilitates transport of the RAGE-bound Aβ 
across the endothelial cell membrane of the BBB via transcy-
tosis. Additionally, RAGE expression is markedly elevated in 
regions of Aβ accumulation.[47,48] N-carboxymethyl-lysine—one 
of the best-characterized AGEs and a marker of AGE accumu-
lation in several tissues—has been identified in intracellular 
protein deposits within neurofibrillary tangles and in the CSF 
of individuals with AD.[22] Moreover, increased dietary AGEs 
have been associated with poorer spatial learning, accelerated 
Aβ deposition in mice, and faster cognitive decline in adults.[22] 

Another disease affected by AGEs is PD. AGEs may contribute 
to Lewy body crosslinking and intracellular oxidative stress via 
RAGE activation.[49] Consequently, AGEs are directly impli-
cated in microglia-mediated neuroinflammation and α-synuclein 
aggregation, potentiating PD degeneration and progression.[22] 

Classical PBUTs originate primarily from the gut microbial 
metabolism of dietary components. In individuals with end-stage 
kidney disease, enzymatic alterations in the gut microbiota 
increase the production of uremic toxin precursors, which are 
subsequently conjugated with sulfate ions in the liver to form 
PBUTs. These toxins accumulate as a result of impaired renal 
excretion and bind to the aryl hydrocarbon receptor (AhR), 
contributing to systemic intracellular signaling pathways impli-
cated in uremic toxicity.[43] 

One of the most extensively studied PBUTs is IS, which induces 
free radical production and amplifies the inflammatory response 
in LPS-stimulated macrophages. IS can also directly damage 
neurons and activate AhR in astrocytes, triggering oxidative 
stress, nuclear factor kappa-B (NF-κB) signaling, and the release 
of pro-inflammatory cytokines.[46] Additionally, in rodent models 
of CKD, AhR activation by IS accumulation is linked to BBB 
disruption, impaired cognitive performance, and neuroinflam-
mation. Moreover, IS affects glycolysis in astrocytes not only 
dose-dependently but also time-dependently. The significance of 
aerobic glycolysis in astrocytes has been extensively documented 
in metabolic brain disorders such as AD and PD.[31,46,50,51] 

Another PBUT linked to neurological manifestations is p-Cresol. 

Elevated p-Cresol levels reportedly altered brain dopamine 
metabolism, reducing the excitability of dopaminergic neurons 
in the ventral tegmental area and exacerbating neurological 
disorders in experimental animals, including progressive neuro-
degeneration characteristic of PD.[52] Individuals with PD experi-
encing motor fluctuations had been found to have higher plasma 
p-Cresol levels and increased concentrations in the CSF.[53] 

In summary, the accumulation of PBUTs in CKD plays a critical 
role in driving oxidative stress, endothelial dysfunction, and 
neuroinflammation. Their limited clearance by conventional 
dialysis and their ability to activate pro-inflammatory and 
oxidative signaling pathways—such as RAGE and AhR—
highlight their contribution to the pathogenesis of neurodegen-
erative diseases, including AD and PD. Understanding these 
mechanisms underscores the need for more effective detoxifi-
cation strategies and therapeutic interventions to mitigate their 
systemic and neurological effects. 

ROLE OF HEMOADSORPTION IN NEUROLOGICAL 
CONDITIONS

Anti-inflammatory and immune-modulating agents are 
attracting growing interest as therapeutic candidates for neuro-
degenerative diseases. However, current therapeutic strategies 
remain inadequate in mitigating inflammatory pathways and 
eliminating toxic molecules in neurological diseases. Epidemi-
ological studies on the effects of NSAIDs on PD progression 
have yielded inconsistent results. Nonetheless, alternative drugs 
with anti-inflammatory properties are being tested in preclinical 
and clinical trials.[54] Conventional dialysis is not only unable to 
remove adequate amounts of inflammatory mediators but also 
of PBUTs.[55] To address these limitations, hemoadsorption has 
emerged as a potential strategy for removing soluble mediators 
of inflammation and PBUTs through their sorbent-based mass 
separation from blood or plasma in both acute and chronic 
clinical settings.[56] 

Extracorporeal hemoadsorption offers an additional approach 
to blood purification, either independently or in conjunction 
with other renal replacement therapies. It addresses limita-
tions of prevailing dialysis techniques that rely on diffusion 
and convection, particularly those related to membrane perme-
ability. The adsorption of solutes onto porous surfaces is 
ultimately governed by the pore density and diameter of the 
sorbent structure (typically 20-500 A), as well as the solute 
concentration. Although forces such as van der Waals and ionic 
bonds are involved, the hydrophobic affinity of the sorbent 
with the targeted solutes is the principal mechanism for solute 
removal in currently available sorbent cartridges.[57] 

In this context, the efficacy and safety of extracorporeal 
hemoadsorption largely depend on the characteristics of the 
adsorbent material [Table 2]. Uncoated activated charcoal, one 
of the earliest materials used, demonstrates strong adsorption 
capacity but is associated with adverse effects such as platelet 
activation and thrombocytopenia, which limit its clinical use. In 
contrast, polymethylmethacrylate (PMMA) membranes provide 
moderate adsorption for PBUTs and have shown favorable 
biocompatibility, particularly in chronic dialysis applications. 
These membranes are characterized by a uniform pore structure 
and symmetric design, enabling both diffusion and direct 
adsorption. Their ability to bind middle molecules, such as β2M 
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and free light chains, as well as inflammatory mediators, has 
positioned them as an immunomodulatory option in selected 
individuals. Additionally, their bisphenol-free composition 
enhances their hemocompatibility. More recently, neutro-mac-
roporous resin-based cartridges—such as HA130 and HA330/
HA380—have demonstrated enhanced removal of middle 
molecules and protein-bound toxins, with low cytotoxicity and 
minimal complement activation. In vitro studies have confirmed 
that these resins do not induce apoptosis or inflammatory gene 
expression, suggesting a safer profile for long-term use in extra-
corporeal therapies.[58-60] 

Information from studies that directly addressed neurological 
conditions—such as PD, AD, and hemoadsorption—is scarce. 
However, data from animal models and other patient profiles 
offer promising directions. Yamamoto et al. demonstrated in 
vitro that activated carbon-based direct hemoadsorption effec-
tively removes IS, p-cresol sulfate, indole acetic acid, phenyl 
sulfate, and hippuric acid, with reduction ratios ranging from 
77.7% to 99.4%.[55] Additionally, the use of a highly adsorptive 
PMMA membrane in hemodiafiltration significantly reduced 
IS concentrations over six months.[61] Zhang et al. showed that 
extending combined hemoadsorption and hemodialysis sessions 
to 4 hour significantly enhanced the removal of IS, p-cresol 
sulfate, and β2M compared to the conventional 2-hour treat-
ments in individuals undergoing maintenance haemodialysis.[62] 
Regarding AGEs, neutral mesoporous resin devices achieved 
45%-50% reduction ratios for these PBUTs and pro-inflam-
matory cytokines in individuals on maintenance hemodialysis, 
although the specific AGE species were not identified.[63] Our 
group observed a 64.7% in vivo reduction in N-carboxymeth-
yl-lysine levels.[64] 

Efforts targeting direct neurological pathologies have included 
the use of cellulose beads immobilized hexadecyl as a ligand 
(Lixelle®) sorbents in individuals with AD, based on the 
hypothesis that active removal of Aβ from the circulating blood 
promotes its clearance from the brain. Lixelle ahas demon-
strated high removal efficiency—51.1% and 43.8% for Aβ1-40 
and Aβ1-42, respectively—reflecting reduced Aβ accumulation in 
the brain and improved cognitive function in individuals under-

going maintenance hemodialysis, as well as in those without 
CKD.[65-68] Aβ reduction has also been reported with the use of 
PMMA membranes.[69] 

Regarding GBS, an interesting study examined the clinical effects 
of hemoadsorption as a treatment. Forty-one individuals with 
GBS received intravenous immunoglobulin, while another 41 
were treated with hemoadsorption. IL-17 and IL-22 levels were 
significantly elevated in the GBS group, and serum cytokines 
were significantly reduced in the hemoadsorption group. 
Moreover, the hemoadsorption group had better scores on the 
activities of daily living scale, indicating their improved self-care 
ability.[70] Other GBS cohorts have demonstrated reductions in 
both inflammatory markers—such as TNF-α and IL-18—and 
mechanical ventilation requirements.[71,72] 

Additionally, studies have reported hemoadsorption benefits 
for neurological conditions other than those mentioned, 
such as inflammatory myopathies and neuromyelitis optica 
syndrome. However, further research is warranted in these 
areas [Table 3].[73,74] 

Challenges and future directions for clinical translation

Despite encouraging experimental data on the potential benefits 
of hemoadsorption for neurological disorders—including 
AD, PD, GBS, and certain forms of vascular or inflammatory 
dementia—physiological and technical challenges limit its 
clinical application. Specifically, validated biomarkers to guide 
treatment initiation and duration in neurological contexts are 
lacking, and parameters such as flow rate, treatment duration, 
and device-membrane matching require standardization. 

Future studies on hemoadsorption for neurological disorders 
must prioritize the identification of reliable peripheral 
biomarkers, such as circulating tau, neurofilament light 
chain, and cytokines implicated in neuroinflammation. These 
biomarkers may help establish biological plausibility for extra-
corporeal therapies. Initial studies should aim to confirm the 
effective removal of these mediators via hemoadsorption, 
thereby providing proof of the viability of this method. 

Table 2
Characteristics and biocompatibility of adsorbent materials used in hemoadsorption

Characteristic Lixelle (S-15, S-25, S-35) Jafron (HA130, HA380) Biosky MG Cytosorb
Type of beads Porous cellulose beads with immobilized 

hexadecyl group
Neutral macroporous resin, polysty-
rene-divinylbenzene

Neutral macroporous resin, polysty-
rene-divinylbenzene

Neutral macroporous polyvinylpyrroli-
done-coated polystyrene-divinylben-
zene beads

Target molecules β2-Microglobulin Protein-bound uremic toxins (IS, 
p-CS, AGEs). Inflammatory cyto-
kines, middle molecules

Protein-bound uremic toxins (IS, 
p-CS, AGEs). Inflammatory cytokines, 
middle molecules

Protein-bound uremic toxins. Inflam-
matory cytokines, middle molecules

Resin volume S-15: 150 mL
S-25: 250 mL
S-35: 350 mL​

HA130: 130 mL
HA380: 380 mL

350 mL 300 mL

Blood volume S-15: 65 mL, 
S-25: 105 mL
S-35: 177 mL​

HA130: 100 mL
HA380: 180 mL

Not specified 150 mL

Pore size 4-20 kDa, designed to selectively adsorb 
β2-MG (11.8 kDa)​

HA130: 5-30 kDa
HA380: 10-60 kDa

5-50 nm 5 nm 
60 kDa

Anticoagulation Standard heparin or regional citrate 
anticoagulation

Standard heparin; citrate in some 
cases

Standard heparin; no mention of 
citrate usage​

Standard heparin; citrate in some 
cases

Blood flow rate 150-250 mL/min in evaluated studies 100-700 mL/min 150-200 mL/min 150-700 mL/min

IS, indoxyl sulfate; p-CS, p-cresyl sulfate; β2-MG, beta2-Microglobulin; AGEs, advanced glycation end products.
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Possible early signals of efficacy include surrogate clinical 
outcomes, such as cognitive performance scores, delirium 
indices, and neurobehavioral assessments. Only after these 
phases are established should randomized trials be designed to 
assess hard clinical outcomes, including functional neurological 
recovery, quality of life, and long-term disability measures. 
This stepwise approach may enable the rational integration of 
hemoadsorption into therapeutic strategies for complex neuro-
immune disorders. 

In parallel, further refinement of adsorbent materials is needed 
to improve molecular targeting and biocompatibility, and to 
minimize off-target effects. Moreover, combining hemoad-
sorption with pharmacologic therapies could potentiate thera-
peutic effects in specific patient populations. Ultimately, person-
alized strategies based on neuroimmune phenotyping may allow 
for better patient selection and optimization of extracorporeal 
interventions. 

However, any potential integration of hemoadsorption into 
chronic neuroinflammatory disease management must be 
preceded by long-term safety assessments. Repeated or sustained 
use may carry risks such as nutrient depletion or unintended 
drug removal. Although some preliminary data from chronic 
dialysis populations suggest a favorable safety profile for specific 
cartridges, robust prospective studies are needed to evaluate the 
tolerability and cumulative effects of hemoadsorption in neuro-
logically vulnerable individuals. 

Additionally, several unresolved issues must be addressed before 
clinical implementation can advance—including the lack of 
standardized thresholds for toxin removal that correlate with 
neurological benefits, the absence of clear selection criteria for 
adsorbent materials based on disease phenotype, and the limited 
comparative data across adsorbent technologies. Conflicting 
results across studies—particularly regarding neurocognitive 
outcomes and inflammatory mediator dynamics—underscore 
the urgent need for harmonized protocols and better designed 
clinical trials. 

CONCLUSION

The rationale for using adsorption in neurological conditions is 
clear, and incremental advances are shedding light on what could 
be extended even to individuals with normal renal function. For 
now, however, these therapies should be promoted to benefit 
individuals with neurological conditions who are undergoing 

maintenance hemodialysis by studying surrogate outcomes such 
as removal of α-synuclein and Aβ protein, alongside improve-
ments in cognitive and/or motor performance. 
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